
Chapter 12

Taking the Complexity Out 
of Complex Numbers

In This Chapter
▶ Defining imaginary and complex numbers

▶ Writing complex solutions for quadratic equations

▶ Determining complex solutions for polynomials

Mathematicians define real numbers as all the whole 
numbers, negative and positive numbers, fractions 

and decimals, radicals — anything you can think of to use in 
counting, graphing, and comparing amounts. Mathematicians 
introduced imaginary numbers when they couldn’t finish 
some problems without them. For example, when solving for 
roots of quadratic equations such as x2 + x + 4 = 0, you quickly 
discover that you can find no real answers. Using the qua-
dratic formula, the solutions come out to be

The equation has no real solution. So, instead of staying stuck 
there, mathematicians came up with something innovative. 
They made up a number and named it i.

 

The square root of –1 can be replaced with the imaginary 
number i: . Furthermore, i2 = –1.

In this chapter, you find out how to create, work with, and 
analyze imaginary numbers and the complex expressions they 
appear in. Just remember to use your imagination! 
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Simplifying Powers of i
The powers of i (representing powers of imaginary numbers) 
follow the same mathematical rules as the powers of real 
numbers. The powers of i, however, have some neat features 
that set them apart from other numbers.

 

You can write all the powers of i as one of four different num-
bers: i, –i, 1, and –1; all it takes is some simplifying of products, 
using the properties of exponents, to rewrite the powers of i:

 ✓ i = i: Just plain old i.

 ✓ i2 = –1: From the definition of an imaginary number (see 
the introduction to this chapter).

 ✓ i3 = –i: Use the rule for exponents (i3 = i2 · i) and then 
replace i2 with –1. So, i3 = (–1) · i = –i.

 ✓ i4 = 1: Because i4 = i2 · i2 = (–1)(–1) = 1.

 ✓ i5 = i: Because i5 = i4 · i = (1)(i) = i.

 ✓ i6 = –1: Because i6 = i4 · i2 = (1)(–1) = –1.

 ✓ i7 = –i: Because i7 = i4 · i2 · i = (1)(–1)(i) = –i.

 ✓ i8 = 1: Because i8 = i4 · i4 = (1)(1) = 1.

 

Simplify the powers of i:

 ✓ i41 = i: Because i41 = i40 · i = (i4)10(i) = (1)10 · i = 1 · i = i.

 ✓ i935 = – i: Because i935 = i932 · i3 = (i4)233(i3) = (1)233 (– i) = 
1(– i) = –i.

 

Every power of i where the exponent is a multiple of 4 is equal 
to 1. If the exponent is one value greater than a multiple of 4, 
the power of i is equal to i. An exponent that’s two more than 
a multiple of 4 results in –1; and three more than a multiple 
of 4 as a power of i results in –i. So, all you need do to change 
the powers of i is figure out where the exponent is in relation 
to some multiple of four.
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Getting More Complex with 
Complex Numbers

The imaginary number i is a part of the numbers called com-
plex numbers, which arose after mathematicians established 
imaginary numbers. The standard form of complex numbers 
is a + bi, where a and b are real numbers, and i2 is –1. The fact 
that i2 is equal to –1 and i is equal to  is the foundation of 
the complex numbers.

Some examples of complex numbers include 3 + 2i, –6 + 4.45i, 
and 7i. In the last number, 7i, the value of a is 0. 

Performing complex operations
You can add, subtract, multiply, and divide complex numbers — 
in a very careful manner. The rules used to perform opera-
tions on complex numbers look very much like the rules used 
for any algebraic expression, with two big exceptions:

 ✓ You simplify the powers of i.

 ✓ You don’t really divide complex numbers — you change 
the division problem to a multiplication problem.

Making addition and subtraction complex

 

When you add or subtract two complex numbers a + bi and 
c + di together, you get the sum (difference) of the real parts 
and the sum (difference) of the imaginary parts:

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi) – (c + di) = (a – c) + (b – d)i

 

Add (–4 + 5i) and (3 + 2i); then subtract (3 + 2i) from (–4 + 5i).

(–4 + 5i) + (3 + 2i) = (–4 + 3) + (5 + 2)i = –1 + 7i

(–4 + 5i) – (3 + 2i) = (–4 – 3) + (5 – 2)i = –7 + 3i
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Creating complex products

 

To multiply complex numbers, you have to treat the numbers 
like binomials and distribute both the terms of one complex 
number over the other:

(a + bi)(c + di) = (ac – bd) + (ad + bc)i

 

Find the product of (–4 + 5i) and (3 + 2i).

(–4 + 5i)(3 + 2i) = –12 – 8i + 15i + 10i2

You simplify the last term by replacing the i2 with –1 to give 
you –10. Then combine –10 with the first term. Your result 
is –22 + 7i, a complex number.

Performing complex division by 
multiplying by the conjugate
The complex thing about dividing complex numbers is that 
you don’t really divide. Instead of dividing, you do a multipli-
cation problem — one that has the same answer as the divi-
sion problem.

Describing the conjugate of a complex number
A complex number and its conjugate are a + bi and a – bi. The 
real part, the a, stays the same; the sign between the real and 
imaginary part changes. For example, the conjugate of –3 + 2i 
is –3 – 2i, and the conjugate of 5 –3i is 5 + 3i.

 

The product of an imaginary number and its conjugate is a 
real number (no imaginary part) and takes the following form:

(a + bi)(a – bi) = a2 + b2

Dividing complex numbers
When a problem calls for you to divide one complex number 
by another, you write the problem as a fraction and then mul-
tiply by a fraction that has the conjugate of the denominator 
in both numerator and denominator.

 

Divide (–4 + 5i) by (3 + 2i).
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Write the problem as a fraction. Then multiply the problem’s 
fraction by a second fraction that has the conjugate of 3 + 2i in 
both numerator and denominator.

Simplifying reluctant radicals
Until mathematicians defined imaginary numbers, many prob-
lems had no answers because the answers involved square 
roots of negative numbers. After the definition of an imagi-
nary number, i2 = –1, came into being, the problems involving 
square roots of negative numbers were solved.

 

To simplify the square root of a negative number, you write 
the square root as the product of square roots and simplify: 

.

 

Simplify .

First, split up the radical into the square root of –1 and the 
square root of the rest of the number, and then simplify by 
factoring out perfect squares:

By convention, you write the previous solution as .

Unraveling Complex Solutions 
in Quadratic Equations

You can always solve quadratic equations with the quadratic 
formula. It may be easier to solve quadratic equations by 
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factoring, but when you can’t factor, the formula comes in 
handy. Until mathematicians began recognizing imaginary 
numbers, however, they couldn’t complete many results of 
the quadratic formula. Whenever a negative value appeared 
under a radical, the equation stumped the mathematicians.

The modern world of imaginary numbers to the rescue! Now 
quadratics with complex answers have results to show.

 

Solve the quadratic equation 2x2 + x + 8 = 0.

Using the quadratic formula, you let a = 2, b = 1, and c = 8:

Investigating Polynomials 
with Complex Roots

Polynomials are functions whose graphs are nice, smooth 
curves that may or may not cross the x-axis. If the degree (or 
highest power) of a polynomial is an odd number, its graph 
must cross the x-axis, and it must have a real root or solution. 
When solving equations formed by setting polynomials equal 
to 0, you plan ahead as to how many solutions you can expect 
to find. The highest power tells you the maximum number 
of solutions you can find. If the solutions are real, then the 
curve either crosses the x-axis or touches it. If any solutions 
are complex, then the number of crossings or touches is 
decreased by the number of complex roots.
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Classifying conjugate pairs
A polynomial of degree (or power) n can have as many as n 
real zeros (also known as solutions, roots, or x-intercepts). If 
the polynomial doesn’t have n real zeros, it has n – 2 zeros, 
n – 4 zeros, or some number of zeros decreased two at a time. 
The reason that the number of zeros decreases by two is that 
complex zeros always come in conjugate pairs — a complex 
number and its conjugate.

 

Complex zeros, or solutions of polynomials, come in conjugate 
pairs — a + bi and a – bi. If one of the pair is a solution, then 
so is the other.

The equation 0 = x5 – x4 + 14x3 – 16x2 – 32x, for example, has 
three real roots and two complex roots, which you know 
because you apply the rational root theorem and Descartes’ 
rule of signs (see Chapter 7) and ferret out those real and 
complex solutions. The equation factors into 0 = x(x – 2)(x + 
1)(x2 + 16). The three real zeros are 0, 2, and –1. The two com-
plex zeros are 4i and –4i. You say that the two complex zeros 
are a conjugate pair, and you get the roots by solving the 
equation x2 + 16 = 0.

Making use of complex zeros
The polynomial function y = x4 + 7x3 + 9x2 – 28x – 52 has two 
real roots and two complex roots. According to Descartes’ rule 
of signs, the function could’ve contained as many as four real 
roots (suggested by the rational root theorem). You can deter-
mine the number of complex roots in two different ways: by fac-
toring the polynomial or by looking at the graph of the function.

The polynomial function factors into y = (x – 2)(x + 2)(x2 + 7x 
+ 13). The first two factors give you real roots, or x-intercepts. 
When you set x – 2 equal to 0, you get the intercept (2, 0). When 
you set x + 2 equal to 0, you get the intercept (–2, 0). Setting the 
last factor, x2 + 7x + 13, equal to 0 doesn’t give you a real root.

But you can also tell that the polynomial function has com-
plex roots by looking at its graph. You can’t tell what the 
roots are, but you can see that the graph has some. If you 
need the values of the roots, you can resort to using algebra 
to solve for them. Figure 12-1 shows the graph of the example 
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function, y = x4 + 7x3 + 9x2 – 28x – 52. You can see the two 
x-intercepts, which represent the two real zeros. You also see 
the graph flattening on the left.

x

y

Figure 12-1: A flattening curve indicates a complex root.

Figure 12-2 can tell you plenty about the number of real zeros 
and complex zeros the graph of the polynomial has . . . before 
you ever see the equation it represents.

x

y

Figure 12-2:  A polynomial with one real zero and several complex zeros 
(marked by changes in direction).

The polynomial in Figure 12-2 appears to have one real zero and 
several complex zeros. Do you see how it changes direction all 
over the place under the x-axis? These changes indicate the 
presence of complex zeros. The graph represents the polyno-
mial function y = 12x5 + 15x4 – 320x3 – 120x2 + 2880x – 18,275. 
The function has four complex zeros — two complex (conju-
gate) pairs — and one real zero (when x = 5).
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